Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

نویسندگان

  • Marina Díez-Municio
  • Miguel Herrero
  • Agustín Olano
  • F Javier Moreno
چکیده

Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum.

UNLABELLED β-N-Acetylhexosaminidases have attracted interest particularly for oligosaccharide synthesis, but their use remains limited by the rarity of enzyme sources , low efficiency, and relaxed regioselectivity of transglycosylation. In this work, genes of 13 β-N-acetylhexosaminidases, including 5 from Bacteroides fragilis ATCC 25285, 5 from Clostridium perfringens ATCC 13124, and 3 from Bif...

متن کامل

Genomic potential for polysaccharide deconstruction in bacteria.

Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us ...

متن کامل

Glycosynthase-catalysed formation of modified polysaccharide microstructures .

Glycosynthases are mutant glycosidases, genetically engineered to catalyse the synthesis of oligosaccharides. A study by Faijes et al. in this issue of the Biochemical Journal has expanded the ability of glycosynthases to catalyse the polymerization of carbohydrates to form unnatural oligosaccharide products that can attain unique crystalline forms. These findings reinforce the potential of gly...

متن کامل

Hydration of vinyl ether groups by unsaturated glycoside hydrolases and their role in bacterial pathogenesis.

Many pathogenic microorganisms invade mammalian and/or plant cells by producing polysaccharide-degrading enzymes (lyases and hydrolases). Mammalian glycosaminoglycans and plant pectins that form part of the cell surface matrix are typical targets for these microbial enzymes. Unsaturated glycoside hydrolase catalyzes the hydrolytic release of an unsaturated uronic acid from oligosaccharides, whi...

متن کامل

Novel α-L-Fucosidases from a Soil Metagenome for Production of Fucosylated Human Milk Oligosaccharides

This paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins. All seven f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014